RNA splicing in regulation of nitric oxide receptor soluble guanylyl cyclase.
نویسندگان
چکیده
Soluble guanylyl cyclase (sGC) is a key protein in the nitric oxide (NO)/-cGMP signaling pathway. sGC activity is involved in a number of important physiological processes including smooth muscle relaxation, neurotransmission and platelet aggregation and adhesion. Regulation of sGC expression and activity emerges as a crucial factor in control of sGC function in normal and pathological conditions. Recently accumulated evidence strongly indicates that the regulation of sGC expression is a complex process modulated on several levels including transcription, post-transcriptional regulation, translation and protein stability. Presently our understanding of mechanisms governing regulation of sGC expression remains very limited and awaits systematic investigation. Among other ways, the expression of sGC subunits is modulated at the levels of mRNA abundance and transcript diversity. In this review we summarize available information on different mechanisms (including transcriptional activation, mRNA stability and alternative splicing) involved in the modulation of mRNA levels of sGC subunits in response to various environmental clues. We also summarize and cross-reference the information on human sGC splice forms available in the literature and in genomic databases. This review highlights the fact that the study of the biological role and regulation of sGC splicing will bring new insights to our understanding of NO/cGMP biology.
منابع مشابه
Hydrogen Peroxide Alters Splicing of Soluble Guanylyl Cyclase and Selectively Modulates Expression of Splicing Regulators in Human Cancer Cells
BACKGROUND Soluble guanylyl cyclase (sGC) plays a central role in nitric oxide (NO)-mediated signal transduction in the cardiovascular, nervous and gastrointestinal systems. Alternative RNA splicing has emerged as a potential mechanism to modulate sGC expression and activity. C-α1 sGC is an alternative splice form that is resistant to oxidation-induced protein degradation and demonstrates prefe...
متن کاملMolecular biology of natriuretic peptides and nitric oxide synthases.
Natriuretic peptides and nitric oxide play important roles in cardiovascular and renal physiology and disease. The natriuretic peptides - atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide - comprise a family of proteins that participate in the integrated control of intravascular volume and arterial blood pressure. The natriuretic peptides differentially bind ...
متن کاملAlternative splicing impairs soluble guanylyl cyclase function in aortic aneurysm.
Nitric oxide (NO) receptor soluble guanylyl cyclase (sGC) is a key regulator of several important vascular functions and is important for maintaining cardiovascular homeostasis and vascular plasticity. Diminished sGC expression and function contributes to pathogenesis of several cardiovascular diseases. However, the processes that control sGC expression in vascular tissue remain poorly understo...
متن کاملSolubilization of guanylyl cyclase from bovine rod outer segments and effects of lowering Ca2+ and nitro compounds.
Guanylyl cyclase from bovine rod outer segments was solubilized using Triton X-100 and a high concentration of KCl, and its regulation was studied. The efficiency of solubilization was about 50-90% of total activity. When the Ca2+ content was lowered (less than 80 nM), guanylyl cyclase was activated about 2-fold. In the presence of higher concentrations of Ca2+ (greater than 140 nM), the activi...
متن کاملIncreased sensitivity to endothelial nitric oxide/NO contributes to arterial normotension in mice with vascular smooth muscle - selective deletion of the ANP-receptor
Running title: Vascular interactions between ANP and NO Classification: Biological Sciences, Physiology Manuscript information: 21 pages, 6 figures; abstract with 245 words, 5151 words in total. Abbreviations footnote: ANP, atrial natriuretic peptide; CNP, C-type natriuretic peptide; NO, nitric oxide; GC-A, guanylyl cyclase-A; sGC, soluble guanylyl cyclase; PKG I, cGMPdependent Protein Kinase I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nitric oxide : biology and chemistry
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2011